Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8=50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Fourth Semester B.E. Degree Examination, June/July 2013 **Control System**

Max. Marks:100 Time: 3 hrs.

> Note: 1. Answer FIVE full questions, selecting atleast TWO questions from each part.

PART - A

- Define control system. Explain the differences between open loop control system and closed loop control system, with examples.
 - b. Draw the signal flow graph and obtain the closed loop transfer function of a system whose (10 Marks) block diagram is given Fig. Q1(b).

- For the mechanical system shown in Fig. Q2(a), obtain the F V analogous electrical 2 (12 Marks) network. (08 Marks)
 - Obtain the transfer function of field controlled servo motors. b.
- Starting from fundamentals derive an expression for the step response of typical under 3 damped second order closed loop control system. Show the typical variation of the response (14 Marks) and mark the settling time on 5% tolerance basis.
 - Explain the following time domain specifications of a second order system
 - i) Delay time
- ii) Rise time
- iii) Settling time
- iv) Peak time.
- (06 Marks)
- For the system with characteristic equation $s^4 + ks^3 + s^2 + s + 1 = 0$, determine the range of k (10 Marks) for stability.
 - The open loop transfer function of a UFB control system is given by

$$G(s) = \frac{50}{s(1+0.05s)(1+0.2s)}$$

Apply R - H criteria. Show that the system is unstable confirm that the introduction of the two terminal pair network connected in cascade with G(s) makes the system stable.

$$C_1 = 0.5 \mu F$$
; $C_2 = 10 \mu F$; $R_1 = 1 M\Omega$ (10 Marks)

PART - B

- 5 a. As applied to root locus, explain how to
 - i) Determine angle of departure or arrival from a complex pole or zero
 - ii) Determine the break away or beak in points if they are present
 - iii) Calculate k on a given point on the root locus

(08 Marks)

- The characteristic equation of a single loop unity feedback control system is given by $F(S) = s^3 + 8s^2 + 20s + k = 0$. Sketch the complete root locus diagram and from that find:
 - i) Two values of k that make the system critically damped
 - ii) Tow values of k for which the damping ratio is 0.95
 - iii) Write closed loop transfer functions for the values of k found in part(ii).

State and explain Nyquist stability criterion.

(08 Marks)

The open loop transfer function of unity feedback system is given by

$$G(s) = \frac{k}{s(s+1)(s+2)}$$

Sketch NYquist plot and find the range of k.

(12 Marks)

- Define the following as applied to bode plots
 - i) Gain margin
 - ii) Phase margin
 - iii) Gain cross over frequency
 - iv) Phase crossover frequency
 - v) Corner frequency.

(06 Marks)

b. The open loop transfer function of a unity feedback control system in given by

$$G(s) = \frac{k(s+1)}{s(s+0.1s)^2(1+0.02s)^2}$$

- i) Draw the bode plot and hence find phase margin and gain margin for k = 1
- ii) Determine the value of k for a gain margin of 20 dB and the value of k for a phase margin of 30°. (14 Marks)
- Write short notes on: 8
 - i) State transition matrix
 - ii) State space analysis.

(06 Marks)

b. Obtain the state model of the electric network shown in Fig. Q8(b) by choosing minimal number of state variables. (08 Marks)

c. Construct a state model for a given system characterized by the differential equation :

$$\frac{d^3y}{dt^3} + \frac{6d^2y}{dt^2} + \frac{11dy}{dt} + 6y + u = 0$$

Draw the state diagram.

(06 Marks)